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Abstract:  Several Authors have studied the steady flow of third grade fluid past 

through a porous plate and obtained the solution using power series expansion and 

homology method. In this paper we have studied the flow of third grade fluid over an 

infinite flat plate which is set to motion with a time dependent velocity u(t) using an 

unconditionally stable finite difference method. As a result it is not necessary to restrict 

the parameters. The equations governing the flow are solved using damped Newton 

method. The effect of different flow parameters on the velocity field are discussed and 

reflected in the figures. The major advantage of this method lies in non-restriction of flow 

parameters. The results are compared with the results obtained by Rajgopal and Endogan 

(1995) analytically and this method gives more accurate solution. 

 

1. Introduction  

 The flow of Non-Newtonian fluids is one of those areas of research which 

offers interesting and exciting challenges. Several studies on the flow of second 

order fluids have been made because of their technological importance. The 

second order fluid model is able to predict the normal stress differences, which 

are characteristics of non Newtonian fluids. However it does not exhibit the shear 

thinning & thickening phenomenon observed in many fluids by Jose et. al (1973), 

Beavers & Joseph (1975). 

 The third grade model attempts to include such characteristics of viscoelastic 

fluids. Fosdik & Raj Gopal (1980) have studied the thermodynamics & stability 

of fluids of third grade. Raj Gopal  & NA (1983) worked on stokes problem on 

the flow due to an oscillating plate for fluid of grade three. Siddiqui & Kaloni 

(1987) worked on plane steady flows of such fluids. Erdogan (1995) considered 

the flow of a third grade fluid in the vicinity of a plane wall suddenly set in 

motion . 
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T.Hayat, S.Nadeem, S.Asghar & A.M. Siddiqui (2001) studied Fluctuating 

Flow of a third grade fluid on a porous plate in a rotating medium.  In 2003 

P.Donald Ariel studied flow of third grade fluid through porous flat channel & 

also T. Hayat, A.H.Kara, E.Momoniant found  exact flow of a third grade fluid 

on a porous wall .   

K.Fakhar, Z.C. Chen (2004) studied steady flow of third grade fluid subject 

to suction. Bikash Sahoo (2007) investigated the laminar flow & heat transfer of 

an incompressible third grade electrically conducting fluid impinging normal to a 

plain in the presence of a uniform magnetic field. 

K.Fakhar, Z henil & Cheng Yi  (2008) investigated the exact solution for an 

unsteady flow of an incompressible fluid of third grade occupying space over an 

infinite porous plate. 

O Anwar Beg, S Rawat etal in 2010 researched on finite element modeling 

of transferring third grade viscoelastic biotechnological fluid flow in a darcian 

permeable half space. 

Recently O.D. Makinde & T.Chinyoka (2011) researched on unsteady 

hydromagnetic generalized Coutte flow & heat transfer characteristics of a 

reactive variable viscosity incompressible electrically conducting third grade 

fluid in a channel with a symmetric convective cooling at the walls in the 

presence of uniform transverse magnetic field. 

R Ellahi 2012 studied on the convergence of series solution of Non-

Newtonion third grade fluid with variable viscosity. Recently (2013) Aiyesimi 

Y.N Okeday OG-T and Lawal O.W investigated unsteady MHD thin film flow of 

a third grade fluid with heat transfer and no slip boundary condition down in an 

incline plane. 

We study the flow of a third grade fluid over an infinite flat plate which is 

set to motion with a time dependent velocity u(t) using finite difference method. 

This work includes the work of Raj Gopal (1990) & Erdogan (1995) & since an 

unconditionally stable finite difference method has been applied, it is not 

necessary to restrict the parameters. 

2. Formulation of the Problem  

We consider the flow near a flat plate which is suddenly moved in its own 

plane with a velocity u(t). The x′ axis is taken along the plate in the direction of u 

& the y′ axis perpendicular to the plate. Assuming that the side wall effects are 
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neglected, namely the plate is infinitely long, from the equation of continuity the 

velocity, which has one component only can be written in the following form :  

 ( , )u u y t  )            

The fluid is set into motion trough the action of the stress at the plate. 

 From the constitutive equation 

1

i

i

pI S


                                 (1) 

where Si= µA1 S2= α1A2 + α2A1
2
, S3= β1A3 +β2 (A2 A1 +A1 A2)+ β(tr A2)A1 

µ, α1,α2,β1, β2, β 3 fluid material constant, σ the stress tensor, p the pressure, I the 

identity tesor & An representing the Rivlin-Ericksen tensor. Defined by A0 =I, 

A1=∆u+(∆u)
T
 

An+1=(∂/∂t + u.∆)An + ∆u.An + (∆u.An)
T
 

Substituting  (1) the expression for stress is given by 

σxx = -p+ α2 (∂u'/∂y')
2
 + 2 β2 (∂u'/∂y')( ∂

2
u'/∂y' ∂t)            (2) 

σyy = -p+ (2 α1 + α 2) (∂u'/∂y')
2
 + (6 β1+ 2β2) ( ∂u'/∂y' )(∂

2
u'/ ∂y'∂t')      (3) 

σzz= -p               (4) 

σxy = µ(∂u'/∂y') + α 1(∂
2
u'/∂y'∂t')  + 2 (β2 +β3) (∂u'/∂y')

3
 + β1(∂

3
u'/∂y'∂t'

2
)    (5) 

σxz = 0 

σzy= 0 

where σxy = σyx, σxz= σzx,  σyz= σzy 

Inserting the above stress components and velocity  equation (1) in the equation 

of motion  

ρDVi / Dt =- ρ i+ ρXi +Pij,j  

We obtain, where Vi =velocity vector, Xi=external body force acting. 

ρ∂u'/∂t' = - ∂p/∂x + µ (∂
2
u'/∂y'

2
)+ α 1(∂

3
u'/∂y'

2
∂t')+ 6(β2 +β3) (∂u'/∂y')

2
(∂

2
u'/∂y'

2
)+ 

β1(∂
4
u'/∂y'

2
dt'

2  
(6) 

0 = ∂p/∂y + ∂/∂y' [2 α 1 + α 2)(∂u/∂y)
2
 + (6β1 +2β2) ( ∂u'/∂y') ∂

2
u'/ ∂y' dt']

     
(7) 

From equation (6) & (7) implies that ∂p/∂x depends upon ‘t’ only. First the 

velocity field is formed from equation (6) & then  the pressure field is obtained. 

Since there is no   applied pressure gradient, equation (6) becomes : 

 ∂u'/∂t' =  ν(∂
2
u'/∂y'

2
)

   
+ β ∂

3
u

'
/∂y'

2
∂t' + γ(∂u'/∂y')

 2
(∂

2
u'/∂y'

2
) +(∂

4
u'/∂y'

2
∂t'

2 
)

   
(8) 
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where  ν = µ/ρ,  β= α1/ρ,    γ = 6(β2 +β3)/ρ,  = β1/ρ 

The initial condition is  

t' =0, u'=  ∂u/∂t=0 for y'≥ 0 

the boundary conditions are 

t' > 0: u' = U(t') for y'=0  

u'→ 0 for y' →∞            

For computation purpose we choose U(t') =U0 cosω't' 

Introducing he following non dimensional quantities 

 U'=u0
'
, y' = ν/u0 y, t' = ν/u

2
0 t 

  And  β= βu
2
0/ν

 2
, ν  = u

4
0v/v

3
,  = u

4
0/v

3     
 

Equation (8) reduces to,  

∂u/∂t = ∂
2
u/∂y

2   
+ β ∂

3
u/∂y

2
∂t + ν (∂u/∂y)

2
(∂

2
u/∂y

2
)

 
 +(∂

4
u/∂y

2
∂t

2 
)

    
(9) 

and the initial & boundary conditions reduces to 

t=0: u= ∂u/∂t =0, y≥ 0                    

t>0: u= U(t)  for y =0 

(Where U(t)= cosωt for oscillating plate) 

3. Solution of the Equations 

Using the finite difference approximation for the derivatives. 

∂u/∂y = (u
j+1

i+1 - u
j+1

i-1)/2h 

∂
2
u/∂y

2
 = 1/2h

2 
[u

j+1
i-1 - 2u

j+1
i +  u

j+1
i+1 + u

j
i+1  - 2u

j
i +u

j
i-1] 

∂u/∂t = (u
j+1

i - u
j-1

i)/ 2∆t 

∂
2
u/∂t

2
 = [u

j+1
i - 2u

j
i  +  u

j-1
i ] /(∆t)

2
 

∂
3
u/∂y

2
∂t = 1/2h

2 
∆t  [(u

j+1
i+1 - 2u

j+i
i +  u

j+1
i-1) – (u

j-1
i+1 -2u

j-1
i +u

j-1
i-1)] 

∂
4
u/∂y

2
∂t

2
 = (u

j+1
i+1 - 2u

j+1
i +  u

j+1
i-1 )   – 2(u

j
i+1 -2u

j
i +u

j
i-1) 

    + (u
j-1

i+1-2ui 
j-1

+u
 j-1

i-1 )/ h
2 
(∆t)

 2
  

The discretised form of equation (9)  

Ri = 1/2∆t (u
j+1

i - u
j-1

i) – 1/h
2
 [u

j+1
i+1– 2u

j+1
i  +u

j+1
i-1] + β/2h

2
 (∆t)[( u

j+1
i+1 - 2u

j+1
i+ 

u
j+1

i-1) – (u
 j-1

i+1 -2u
j-1

i +u 
j-1

i-1 )]  + ν/4h
2 
x h

2
 [u

j+1
i+1 - u

j+1
i-1]

 2
 [u

j+1
i+1– 2u

j+1
i +u

j+1
i-1] 

+ / h
2
(∆t

2
)[( u

j+1
i+1 -2u

j+1
i +u 

j-1
i-1)

 
-2 [u

j
i+1– 2(u

j
i +u

j
i-1 )+( u

j-1
i+1 - 2u

i-1
i + u

j-1
i-1)]   

= 0 
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i=1,2………….N, j= 0,1,2…………………….M-1           (10) 

& the discretised boundary conditions are 

u
0
i = 0,i =0,1,2………….N+1 

u
-1

i = u
1
i ,i =0,1,2………….N  

u
j
0 = cos(ωj∆t)                   (11) 

u
j
N+1 = 0 

 

For j=0, the equation (11) reduces to 

R0
(i)

  = 1/2∆t (u
1
i – u

-1
i) – 1/h

2
 [u

1
i+1– 2u

1
i +u

1
i-1] - β /2 h

2
(∆t) 

            [( u
1
i+1 - 2u

1
i+u

1
i-1)– (u

-1
i+1 -2u

-1
i +u

-1
i-1 )] –  

ν  / 4h
2
xh

2
 [u

1
i+1 – u

1
i-1]

 2
  - [u

1
i+1– 2u

1
i +(u

1
i-1)] -  / h

2
(∆t

2
)[( u

1
i+1 

-2u
1

i+u
1
i-1) – (u

-1
i+1 -2u

-1
i +u

-1
i-1 )  

         = 0                    (12) 

Using equation (11) in equatin (12)becomes 

R0(i) = 1/h
2
 (u

1
i+1 – 2u

1
i+ u

1
i-1  ) + ν  / 4h

4
 (u

1
i+1 – u

1
i-1)

2
 ( u

1
i+1 -2u

i
i+u

1
i-1) 

            +2 / h
2
(∆t)

 2 
 ( u

1
i+1 -2u

i
i+u

1
i-1)  

        = 0                    (13) 

 The system of non linear equation (10), (11) & (12) with the boundary 

conditions of (11) are solved using Damped Newton method described in Conte 

De Boor (1980). 

 The derivatives in the Jacobian used in this method are computed as follows. 

 ∂R0(i)/ ∂u
1
i-1  =1/h

2
+ ν/4h

4
 (u

1
i+1 – u

1
i-1)

2
 - 2ν/ 

         4h
4
(u

1
i+1 – u

1
i-1) (u

1
i+1 – 2u

1
i+ u

1
i-1  )  +2/ h

2
(∆t)

 2            
(14) 

∂R0(i)/ ∂u
1
i   = -2/h

2
 - 2ν /4h

4
 (u

1
i+1 - u

i
i-1)

 2
 - 4 / h

2
(∆t)

 2  
(15)

  

        
 

∂R0(i)/ ∂u
1
i+1   = 1/h

2
 + ν/4h

4
 (u

1
i+1 - u

i
i-1)

 2
+ 2ν /  

                         4h
4
 (u

1
i+1 – u

1
i-1) (u

1
i+1 – 2u-

1
i+ u

1
i-1  ) +2 / h

2
(∆t)

 2            
(16) 

 From Equation (10) & (11) at j= 1,2…………………………M-1 we get 

 

j=1,2………..M 
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∂Ri/ ∂u
J+1

i-1  =-/1/2∆t - 2/h
2
- 2β /2h

2
∆t – 2ν / 

                      4h
4
 (u

j+1
i+1 – u

j+1
i-1)

2
 - 2 / h

2
(∆t)

 2                
(17) 

∂Ri/ ∂u
J+1

i-1  =1/h
2
 + β /2h

2
∆t – 2ν  / 4h

4
(u

j+1
i+1 – u

j+1
i-1) (u

j+1
i+1 – 2u

j+1
i + u

j+1
i-1)

 

+ ν / 4h
4
(u

j+1
i+1 – u

j+1
i-1)  + / h

2
(∆t)

 2             
(18) 

∂Ri/ ∂u
J+1

i+1  =1/h
2
 + β / 2h

2
∆t – 2ν /4h

4
(u

j+1
i+1 – u

j+1
i-1) (u

j+1
i+1 – 2u

j+1
i + u

j+1
i-1)

 

+ 2ν / 4h
4
(u

j+1
i+1 – u

j+1
i-1)

 2
 +/ h

2
(∆t)

 2             
(19) 

At i=N-1, i+1=N, i-1=N-2 & 

RN-1= 1/2∆t(u
j+1

N-1 – u
j
N-1)- 1/h

2
[u

j+1
N – 2u

j+1
N-1 – u

j+1
N-2] 

          - β /2h
2
∆t [(u

j+1
N – 2u

j+1
N-1+u

j+1
N-2 )- ([u

j-1
N – 2u

j-1
N-1 – u

j-1
N-2)] 

     - ν /4h
4
[(u

j+1
N – u

j+1
N-2)

 2
 (u

j+1
N – 2u

j+1
N-1 – u

j+1
N-2)] -/ h

2
(∆t)

 2
  

[(u
j+1

N – 2u
j+1

N-1+ u
j+1

N-2) 
 
+ (u

j-1
N – 2u

j-1
N-1 + u

j-1
N-2)                (20) 

∂RN-1/ ∂u
J+1

N-1  =1/2∆t + 2/h
2
+2β/2h

2
∆t + 2ν/4h

4
 (u

j+1
N – u

j+1
N-2)

2
  

                         + 2/ h
2
(∆t)

 2                   
(21) 

∂RN-1/ ∂u
J+1

N  =-1/h
2
- β /2h

2
∆t – v /4h

4
 (u

j+1
N – u

j+1
N-2)

2
 - 2ν / 4h

4
(u

j+1
N – u

j+1
N-2) 

-(u
j+1

N – 2u
j+1

N-1+ u
j+1

N-2) -  / h
2
(∆t)

 2              
(22) 

∂RN-1/ ∂u
J+1

N-2  =-1/h
2
- β / 2h

2
∆t – ν /4h

4
 (u

j+1
N – u

j+1
N-2)

2
 - 2ν  /4h

4
(u

j+1
N – u

j+1
N-2) 

x (u
j+1

N-2 – 2u
j+1

N-1+ u
j+1

N-2)  -   / h
2
(∆t)

 2              
(23) 

4. Results and Discussion 

       The flow and heat transfer of a third grade fluid past an infinite vertical plate 

has been studied. 

Fig  1 reflects the variation or velocity for different values of the parameter 

y. It is observed from the figure that velocity increases with increase in y and 

decreases with decrease of y. For smaller value of y and the larger value of y 

rapid change in velocity is observed than the intermediate values. 

In Fig.  2 and  3 the effect of the parameter α for two different values of y 

=0.5 and y =0 is depicted. It is observed that in both the cases as α increases the 

velocity increases & vice versa. 

Fig  4 show that the effect of the parameter t on the velocity field for fixed 

α,y,a,Re & Gr. It is observed that velocity increases with increase of time & 

decreases of times.   
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Fig  5 show the variation of velocity for different values of Re. It is observed 

that for fixed value of α,y,a & Gr.  as Re  increases, the velocity decreases & as Re 

decreases, the velocity increases.   

In Fig 6 we have studied the effect of the frequency parameter ω on the 

velocity where the plate oscillates. As ω increases the velocity profile increases  

Fig. 1: Velocity distribution for different values of ν for the case t=2, α=-2,   

a=0.5, Re=1, Gr=5 

Fig. 2: Velocity distribution for different values of α for the case  

             t =2, a = 0.5,   r =-5, Re=1, Gr=5 
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Fig. 3: Velocity distribution for different values of α for the case  

            t=2, a =0.5,   r =0, Re=1, Gr =5 

Fig. 4: Velocity distribution for different values of t for the case  

            α =2, r = -5,   a = 0.5, Re=1, Gr =5 
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Fig. 5: Velocity distribution for different values of  Re for the case  

            r = .5, α =2, a = 0.5,  Gr =5 

Fig. 6: Velocity distribution for different values of  of frequency  

            parameters  ω for the case t = 2, a=0.5, ν =0.5, Re =1, Gr = 5 
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